Nuclear physicists have developed a new method for quickly emulating the properties of atomic nuclei – quantum objects whose properties are complex and cannot be explained by classical physics. The new method helps scientists understand those quantum properties. The emulator allows a standard personal computer to approach these quantum problems in less than an hour, starting with a training stage that uses a small set of exact calculations from the Oak Ridge Leadership Computing Facility’s Summit supercomputer. The emulator then generates 1 million predictions for the ground-state energy and charge radius of nuclei of the isotope oxygen-16.
Researchers have long sought to uncover the properties of the interaction that binds protons and neutrons to atomic nuclei. But analyzing millions of exact samples of a complex nucleus would take the Summit supercomputer more than a year. This new method dramatically reduces the computational complexity of the many-nucleon problem and introduces new possibilities to systematically quantify uncertainties in first-principle atomic nuclei computations.